Algorithm
-
[백준 17070] 파이프 옮기기 1Algorithm/Source Code 2022. 2. 20. 22:57
문제 유현이가 새 집으로 이사했다. 새 집의 크기는 N×N의 격자판으로 나타낼 수 있고, 1×1크기의 정사각형 칸으로 나누어져 있다. 각각의 칸은 (r, c)로 나타낼 수 있다. 여기서 r은 행의 번호, c는 열의 번호이고, 행과 열의 번호는 1부터 시작한다. 각각의 칸은 빈 칸이거나 벽이다. 오늘은 집 수리를 위해서 파이프 하나를 옮기려고 한다. 파이프는 아래와 같은 형태이고, 2개의 연속된 칸을 차지하는 크기이다. 파이프는 회전시킬 수 있으며, 아래와 같이 3가지 방향이 가능하다. 파이프는 매우 무겁기 때문에, 유현이는 파이프를 밀어서 이동시키려고 한다. 벽에는 새로운 벽지를 발랐기 때문에, 파이프가 벽을 긁으면 안 된다. 즉, 파이프는 항상 빈 칸만 차지해야 한다. 파이프를 밀 수 있는 방향은 총 ..
-
[백준 17406] 배열 돌리기 4Algorithm/Source Code 2022. 2. 19. 19:21
문제 크기가 N×M 크기인 배열 A가 있을때, 배열 A의 값은 각 행에 있는 모든 수의 합 중 최솟값을 의미한다. 배열 A가 아래와 같은 경우 1행의 합은 6, 2행의 합은 4, 3행의 합은 15이다. 따라서, 배열 A의 값은 4이다. 1 2 3 2 1 1 4 5 6 배열은 회전 연산을 수행할 수 있다. 회전 연산은 세 정수 (r, c, s)로 이루어져 있고, 가장 왼쪽 윗 칸이 (r-s, c-s), 가장 오른쪽 아랫 칸이 (r+s, c+s)인 정사각형을 시계 방향으로 한 칸씩 돌린다는 의미이다. 배열의 칸 (r, c)는 r행 c열을 의미한다. 예를 들어, 배열 A의 크기가 6×6이고, 회전 연산이 (3, 4, 2)인 경우에는 아래 그림과 같이 회전하게 된다. A[1][1] A[1][2] → A[1][3..
-
[백준 17136] 색종이 붙이기Algorithm/Source Code 2022. 2. 18. 17:32
문제 과 같이 정사각형 모양을 한 다섯 종류의 색종이가 있다. 색종이의 크기는 1×1, 2×2, 3×3, 4×4, 5×5로 총 다섯 종류가 있으며, 각 종류의 색종이는 5개씩 가지고 있다. 색종이를 크기가 10×10인 종이 위에 붙이려고 한다. 종이는 1×1 크기의 칸으로 나누어져 있으며, 각각의 칸에는 0 또는 1이 적혀 있다. 1이 적힌 칸은 모두 색종이로 덮여져야 한다. 색종이를 붙일 때는 종이의 경계 밖으로 나가서는 안되고, 겹쳐도 안 된다. 또, 칸의 경계와 일치하게 붙여야 한다. 0이 적힌 칸에는 색종이가 있으면 안 된다. 종이가 주어졌을 때, 1이 적힌 모든 칸을 붙이는데 필요한 색종이의 최소 개수를 구해보자. 입력 총 10개의 줄에 종이의 각 칸에 적힌 수가 주어진다. 출력 모든 1을 덮는..
-
[백준 16637] 괄호 추가하기Algorithm/Source Code 2022. 2. 17. 23:20
문제 길이가 N인 수식이 있다. 수식은 0보다 크거나 같고, 9보다 작거나 같은 정수와 연산자(+, -, ×)로 이루어져 있다. 연산자 우선순위는 모두 동일하기 때문에, 수식을 계산할 때는 왼쪽에서부터 순서대로 계산해야 한다. 예를 들어, 3+8×7-9×2의 결과는 136이다. 수식에 괄호를 추가하면, 괄호 안에 들어있는 식은 먼저 계산해야 한다. 단, 괄호 안에는 연산자가 하나만 들어 있어야 한다. 예를 들어, 3+8×7-9×2에 괄호를 3+(8×7)-(9×2)와 같이 추가했으면, 식의 결과는 41이 된다. 하지만, 중첩된 괄호는 사용할 수 없다. 즉, 3+((8×7)-9)×2, 3+((8×7)-(9×2))은 모두 괄호 안에 괄호가 있기 때문에, 올바른 식이 아니다. 수식이 주어졌을 때, 괄호를 적절히..